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Convection in a vertical magnetic field occurs in narrow cells in the physically
relevant limit where the Chandrasekhar number Q becomes large, corresponding to
a strong field or small diffusion. This allows asymptotic solutions to be developed
for fully nonlinear convection, requiring only the solution of a nonlinear boundary
value problem. Solutions for steady and oscillatory magnetoconvection are obtained,
with different scalings. In the steady case, the heat flux and the fluid velocity are
found at leading order in the asymptotic expansion and the vertical velocity scales
as Q1/6. In the oscillatory case, where it is necessary to continue to second order,
the vertical velocity is of order Q1/3 and the frequency of the oscillations is always
greater than that predicted by linear theory. The heat flux does not depend on either
the wavenumber or the planform.

1. Introduction
Recent work by Bassom & Zhang (1994) has shown that fully nonlinear convection

in a rapidly rotating layer can be described by asymptotic methods based on the
narrow cell width. Here, ‘fully nonlinear’ means that the Rayleigh number is of
the same order as the critical Rayleigh number in the asymptotic expansion, but is
otherwise arbitrary. Although the fluid velocity becomes large, the flow is confined
to a single horizontal wavenumber, and the only nonlinear coupling that survives is
through the mean temperature. The vertical structure is determined by the solution
of a single nonlinear eigenvalue problem. Some of these results were obtained by
Chan (1974), but this earlier work was based on a modal truncation rather than
asymptotic methods. More recently, Julien & Knobloch (1997, 1999) have extended
this analysis to the cases of oscillatory and three-dimensional rotating convection,
where the scalings are the same.

This paper adapts the asymptotic methods of Bassom & Zhang (1994) to the
problem of convection in a vertical magnetic field. There has been much work in
this area, but hitherto this has been concerned with linear and weakly nonlinear
theory (Chandrasekhar 1961; Weiss 1981; Matthews & Rucklidge 1993; Clune &
Knobloch 1994) or nonlinear numerical simulations (Matthews, Proctor & Weiss
1995). Magnetoconvection has been studied as an example of a dynamical system
with a rich and complicated nonlinear structure, but interest in the problem originally
arose from studies of sunspots. In a sunspot, convection within the Sun is inhibited
by the presence of a magnetic field, causing the sunspot to appear dark (Weiss et al.
1996). The most important dimensionless parameters are the Chandrasekhar number
Q, measuring the strength of the stabilizing magnetic field in relation to diffusion
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and the Rayleigh number R, measuring the ratio of the destabilizing temperature
difference to diffusion. Since the diffusion terms are small on the large astrophysical
scales, these parameters are both very large in a sunspot. The limit of large Q has
been considered by Proctor (1986), but only in the weakly nonlinear regime.

There are two significant advantages of the present work over the the rotating
case considered by Bassom & Zhang (1994). One is that rotating convection rolls are
known to be unstable to the Kuppers–Lortz instability (Kuppers & Lortz 1969). In
the rapidly rotating limit, Matthews & Cox (1999) have shown that the dominant
instability involves rolls aligned at a small angle to the original rolls. For convection
in a magnetic field there is no known analogous instability and so the solutions
obtained may be stable. Secondly, the analysis here is valid for arbitrary three-
dimensional flows. This is not true in the rotating case because the nonlinear terms in
the momentum equation appear at leading order so the method fails. However, recent
work by Julien & Knobloch (1999) shows that for certain choices of the planform
function these nonlinear terms vanish and so fully nonlinear solutions can be obtained
for these planforms.

Section 2 below reviews the equations, the linear stability results and the important
features of the Q → ∞ limit. The case of fully nonlinear steady magnetoconvection,
which is a fairly straightforward adaptation of the work of Bassom & Zhang (1994),
is described in §3. The oscillatory case is considered in §4; here the analysis is
considerably more complicated.

2. Equations and linear theory
The dimensionless governing equations for convection in a fluid with kinematic

viscosity ν in a layer of depth d with a vertical magnetic field of strength B0 are

1

σ

[
∂u

∂t
+ u · ∇u

]
= −∇P + Rθẑ + ζQB · ∇B + ∇2u, (2.1)

∂θ

∂t
+ u · ∇(T + θ) =

∂

∂z
wθ + ∇2θ, (2.2)

∂T

∂t
+

∂

∂z
wθ =

∂2T

∂z2
, (2.3)

∂B

∂t
= ∇× (u× B) + ζ∇2B. (2.4)

The velocity u and the magnetic field B are constrained to be solenoidal. The Rayleigh
number is defined by

R =
gα∆Td3

νκ
, (2.5)

where g is the acceleration due to gravity, α is the expansion coefficient, ∆T is the
temperature difference across the layer and κ is the thermal diffusivity. The field
strength is measured by the Chandrasekhar number

Q =
B2

0d
2

µ0ρην
, (2.6)

where µ0 is the magnetic permeability, ρ is the fluid density and η is the magnetic
diffusion. The remaining parameters are the Prandtl number σ = ν/κ and the mag-
netic Prandtl number ζ = η/κ. The overbar denotes a horizontal average and the
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fluid temperature has been divided into a horizontally averaged part T (z, t) and a
fluctuating part θ(x, y, z, t).

The boundaries are stress free, fixed temperature and electrically insulating, so the
components of the velocity u = (u, v, w) and magnetic field B = (Bx, By, Bz) obey

w =
∂u

∂z
=
∂v

∂z
= Bx = By =

∂Bz

∂z
= θ = 0 (2.7)

at both boundaries, while T = 0 at the upper boundary z = 1 and T = 1 at the lower
boundary z = 0. These boundary conditions are chosen for mathematical convenience,
so that the linear eigenfunctions are trigonometric.

The stationary solution of the equations is given by u = 0, θ = 0, B = (0, 0, 1),
T = 1 − z. The linear theory for the problem (Chandrasekhar 1961) shows that
the onset of convection can be steady or oscillatory. In the steady case, the critical
Rayleigh number at which the growth rate is zero is

Rc =
(π2 + k2)3 + Qπ2(π2 + k2)

k2
, (2.8)

where k is the horizontal wavenumber. The wavenumber km that minimizes Rc obeys
2k6

m + 3k4
mπ

2 = π6 + Qπ4. This paper is concerned with the limit of large Q, in which
case Rc also becomes large. This can be thought of as the case of a strong magnetic
field, but since both R and Q are inversely proportional to the diffusion coefficients,
the limit of large Q can also be thought of as the limit in which the diffusion terms
become small. This is an important limit, since the diffusion terms are small in the
astrophysical application. In the limit Q→ ∞ it follows that km = O(Q1/6) and, for k
of order Q1/6,

Rc

Q
= π2 + O(Q−1/3). (2.9)

There are two important features of the linear theory in this limit. First, since the
relevant parameter is Rc/Q, viscosity plays no role – the thermal instability is resisted
by the magnetic field alone. Secondly, the marginal curve becomes flat, since at
leading order Rc does not depend on k. Neither of these features hold for the case
of rotating convection studied by Bassom & Zhang (1994). Because of this flattening
of the marginal curve, resonant interactions between modes of different wavenumber
become increasingly important at large Q, as found by Matthews et al. (1995).

Oscillatory convection can only occur at onset if ζ < 1. For large Q the same
scaling km = O(Q1/6) holds and

Rc ∼ (σ + ζ)ζQπ2

1 + σ
. (2.10)

The frequency ω of the oscillations is given by

ω2 ∼ σζQπ2(1− ζ)/(1 + σ). (2.11)

Again the marginal curve becomes flat for large Q, but in the oscillatory case the
fluid viscosity does appear, since σ occurs in (2.10) and (2.11).

3. Nonlinear steady convection
Fully nonlinear solutions to the governing equations can be obtained in the asymp-

totic limit Q→ ∞, in terms of a small parameter ε defined by q = ε6Q, with q order
one. All horizontal derivatives are of order ε−1, while vertical derivatives remain of
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order one. It is also assumed that σ and ζ are order one, while R = O(ε−6). For steady
convection, the appropriate scalings for fully nonlinear convection are obtained by
seeking a solution in which the mean temperature T is O(1). The convective heat flux
wθ must also be O(1), from (2.3), and balancing the advection and diffusion terms in
(2.2) gives w = O(ε−2θ). The scalings for velocity and temperature are therefore

u = O(1), v = O(1), w = O(ε−1), T = O(1), θ = O(ε). (3.1)

These scalings are the same as for the case of rotating convection (Bassom & Zhang
1994). The scaling for the perturbation magnetic field, defined by B = (0, 0, 1) + b, is
deduced by comparing terms in (2.4), or by balancing the buoyancy force with the
Lorentz force in (2.1):

bx = O(ε2), by = O(ε2), bz = O(ε). (3.2)

This scaling is similar to that used by Proctor (1986), except that all the fluctuating
quantities are larger by one power of ε−1. A formal asymptotic expansion can be set
up, but this is not necessary since all the information that is needed can be obtained
at leading order. The dominant terms in the equations are then as follows. By taking
the z-component of the curl of the curl of (2.1) the pressure is eliminated, giving

0 = −R∇2
Hθ − ζQ ∂

∂z
∇2
Hbz, (3.3)

where ∇2
H is the horizontal Laplacian. The leading terms in (2.2), (2.3) and the vertical

component of (2.4) are

w
dT

dz
= ∇2

Hθ, (3.4)

d

dz
wθ =

d2T

dz2
, (3.5)

0 =
∂w

∂z
+ ζ∇2

Hbz. (3.6)

It can be verified that the nonlinear terms are sufficiently small that they do not
appear, except in (3.5). The equation (3.5) for the mean temperature can be integrated
to give

wθ =
dT

dz
+N, (3.7)

where the integration constant N is the Nusselt number, indicating the total heat
flux through the layer. The equations are now separable, so that w, bz and θ are
proportional to a function h(x, y) that obeys the Helmholtz equation ∇2

Hh = −k2h.
Using (3.6) and (3.4) to eliminate bz and θ, the remaining equations (3.3) and (3.7)
give

0 = −RwdT

dz
+ Q

d2w

dz2
, (3.8)

−w
2

k2

dT

dz
=

dT

dz
+N, (3.9)

where all variables are now functions of z only and the scaling h2 = 1 has been
adopted. Rescaling w = Wk and solving (3.9) gives

dT

dz
=
−N

1 +W 2
, (3.10)
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so (3.8) becomes

d2W

dz2
+
RN

Q

W

1 +W 2
= 0. (3.11)

The value of N is determined by integrating (3.10) and applying the boundary
conditions T (0) = 1, T (1) = 0:

N−1 =

∫ 1

0

dz

1 +W 2
. (3.12)

The problem of nonlinear convection in a strong magnetic field has been reduced to the
nonlinear eigenvalue problem given by (3.11), (3.12), with the boundary conditions
W (0) = W (1) = 0. Note that the features of the linear problem, that there is no
dependence on either the viscosity or the wavenumber, also hold in the fully nonlinear
regime. Thus the magnetoconvection problem is simpler than the corresponding
rotating convection problem of Bassom & Zhang (1994), where k cannot be scaled
out. Another important feature that is preserved from linear theory is that the
planform function h(x, y) is entirely arbitrary.

It is of interest to check that linear and weakly nonlinear theory are correctly
captured by (3.11), (3.12). In the linear case, w → 0 so N → 1 and (3.11) has the
solution W = A sin πz with R = Qπ2. In the weakly nonlinear regime,

N = 1 +

∫ 1

0

W 2 dz + O(A4) (3.13)

and so (3.11) becomes

Q

R

d2W

dz2
+

(
1−W 2 +

∫ 1

0

W 2 dz

)
W = 0, (3.14)

where terms beyond cubic order in W have been dropped. Proctor & Holyer (1986)
obtained (3.14) for weakly nonlinear convection in salt fingers. Writing W = A sin πz
and then equating terms in sinπz in (3.14), assuming that R is near Rc, leads to the
formula

A2 = 4(R − Rc)/Rc (3.15)

for the amplitude, which agrees with the weakly nonlinear result given by Weiss
(1981).

Numerical solutions to (3.11), (3.12) can easily be obtained as follows. A value
of RN/Q is chosen, and then (3.11) can be solved using a shooting method. The
integral (3.12) is then evaluated numerically, giving the value of N and hence the
corresponding value of R/Q. The results are given in figure 1 which shows the
maximum vertical velocity and the Nusselt number as a function of R/Q. Profiles
of vertical velocity W and mean temperature T are shown in figures 2 and 3 for
three values of R/Q. In general the solution to (3.11), (3.12) is not unique, as new
solutions appear at R/Q = n2π2 for any integer n. The solutions shown in the figures
correspond to n = 1.

A number of analytical results can be derived from (3.11), (3.12). It is clear that
N > 1 and that dT/dz < 0 throughout the layer. Integrating (3.11) once gives(

dW

dz

)2

=
RN

Q

(
log (1 +W 2

m)− log (1 +W 2)
)

(3.16)

where Wm is the maximum value of W .
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Figure 1. Nusselt number (solid line) and maximum vertical velocity (dashed line) as a function of
R/Q, for steady magnetoconvection.
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Figure 2. Profiles of vertical velocity at R/Q = 20 (solid line), R/Q = 40 (dashed line) and
R/Q = 60 (dotted line).
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Figure 3. Temperature profiles for the same values of R/Q as in figure 2.



Asymptotic solutions for nonlinear magnetoconvection 403

Further analytical progress can be made by taking the second asymptotic limit of
large R/Q, when W and N also become large, as described by Bassom & Zhang
(1994). The integral in (3.12) is dominated by the regions near the boundaries,
and setting W = γz + · · · yields γ ∼ Nπ as γ → ∞. From (3.16) it follows that
γ2 ∼ 2(R/Q)N log Wm, so eliminating γ gives

Nπ2 ∼ 2(R/Q) log Wm. (3.17)

From (3.11) in the interior region,

W 2
m = O(RN/Q), (3.18)

and since only log Wm is needed for (3.17), an exact solution is not required. From
(3.18) it follows that 2 log Wm ∼ log (R/Q) + log N, while (3.17) gives log N ∼
log (R/Q), so log Wm ∼ log (R/Q). Substituting for log Wm in (3.17) gives the following
scaling for the Nusselt number at large R:

N ∼ 2R

π2Q
log (R/Q). (3.19)

Scaling laws of this type for the analogous problem of rapidly rotating convec-
tion were derived by Chan (1974). The maximum vertical velocity Wm is of order
(R/Q)(log (R/Q))1/2, and hence the assumption that (3.12) is dominated by the regions
near the boundaries can be verified. Throughout most of the layer, T = 0.5, but there
are boundary layers with a thickness of order 1/N in which W = O(1) and the
temperature gradient is O(N).

It is important to appreciate that (3.19) cannot be valid for arbitrarily large R
at fixed Q, since at sufficiently large R the magnetic field becomes dynamically
unimportant and the usual scaling laws for turbulent convection, with N = O(R1/3)
or N = O(R2/7) will apply. As R is increased, the assumption that the vertical
derivatives are small compared with horizontal derivatives is no longer valid, because
of the appearance of the boundary layers. As discussed by Bassom & Zhang (1994),
agreement between (3.19) and the results in figure 1 is poor because the logarithmic
asymptotics only becomes accurate at very large R.

4. Nonlinear oscillatory convection
In the case of oscillatory magnetoconvection a different scaling is required and the

problem is more complicated as it is necessary to proceed to higher order. In the
simpler case of rapidly rotating convection (Julien & Knobloch 1997), the scalings
in the oscillatory case and steady case are the same and all the required information
can be obtained at leading order. The difference between the two systems is that the
frequency of the oscillations is O(ε−3) in magnetoconvection but O(ε−2) for rotating
convection. At leading order therefore, the time-derivative terms in (2.1)–(2.4) are
larger than the diffusive terms.

The appropriate asymptotic expansions are as follows:

w = ε−2w1 + ε−1w2 + · · · , T = T1 + εT2 + · · · , (4.1)

θ = εθ1 + ε2θ2 + · · · , bz = εbz1 + ε2bz2 + · · · , (4.2)

with R = ε−6r and Q = ε−6q. The relevant fast timescale is τ = ε−3t, suggested by
the linear result (2.11); periodic solutions will be sought on this timescale. Note that
the difference between the oscillatory and steady cases is that here the fluid velocity
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is larger by one order of ε−1. At first sight this scaling looks incorrect because the
heat flux wθ appears to be of order ε−1. However it turns out that this leading-order
heat flux is oscillatory and hence only influences T3.

At O(ε−3), (2.3) gives

∂T1

∂τ
= 0, (4.3)

so the mean temperature is a function of z only, T1 = T1(z). Similarly, the O(ε−2)
terms give T2 = T2(z). At O(ε−1), (2.3) yields

∂T3

∂τ
+

∂

∂z
w1θ1 = 0. (4.4)

Seeking a periodic solution, this equation can be averaged in time and then integrated
to give

〈w1θ1〉 = 0, (4.5)

where 〈 〉 indicates an average over x, y and τ. At O(1), (2.3) gives

∂T4

∂τ
+

∂

∂z
w1θ2 + w2θ1 =

d2T1

dz2
, (4.6)

which when averaged in time and integrated becomes

〈w1θ2 + w2θ1〉 =
dT1

dz
+N. (4.7)

After taking the curl of the curl of (2.1), time and the horizontal dependence can
be separated out, so

w1 = w1(z) exp iωτ
∑

aj exp ikj · x+ c.c. (4.8)

with a wavenumber k = |kj | = ε−1k1; similar expressions apply for θ1 and bz1. As in
the steady case, the solution is written in terms of an arbitrary planform function. The
scaling

∑ |aj |2 = 1 is adopted. At next order, only those terms in w2 and θ2 that are
proportional to exp iωτ are required, since only these terms will contribute to (4.7).
Thus the functions w2, θ2 and bz2 can also be written in the form (4.8). Henceforth
all variables only depend on z, and (4.5) and (4.7) become

w1θ
∗
1 + w∗1θ1 = 0, (4.9)

w1θ
∗
2 + w∗1θ2 + w2θ

∗
1 + w∗2θ1 =

dT1

dz
+N, (4.10)

where ∗ denotes the complex conjugate.
The leading terms in (2.1), (2.2), (2.4) are, at O(ε−5), O(ε−2), O(ε−2) respectively,

iωw1/σ = rθ1 + ζqb′z1, (4.11)

iωθ1 + w1T
′
1 = 0, (4.12)

iωbz1 = w′1, (4.13)

where the prime denotes a z-derivative. Note from (4.12) that θ1 and w1 are out of
phase so that (4.9) is satisfied. Eliminating θ1 and bz1 leads to the following equation
for w1:

−ω
2

σ
w1 = −rw1

dT1

dz
+ ζq

d2w1

dz2
. (4.14)
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The equations (2.1), (2.2), (2.4) at next order are

i
ω

σ
w2 = rθ2 + ζqb′z2 − k2

1w1, (4.15)

iωθ2 + w2T
′
1 + w1T

′
2 = −k2

1θ1, (4.16)

iωbz2 = w′2 − ζk2
1bz1. (4.17)

The nonlinear terms do not appear here, because they do not have the time and space
dependence given in (4.8). Using (4.12) and (4.16) to eliminate θ1 and θ2, (4.10) can
be evaluated. The terms in w2 and T2 cancel out, giving

T ′1 =
−N

1 + 2k2
1 |w1|2/ω2

. (4.18)

Integrating this over the layer gives the Nusselt number:

N−1 =

∫ 1

0

dz

1 + 2k2
1 |w1|2/ω2

. (4.19)

To close the problem a condition to determine ω is required. This is obtained by
eliminating θ2 and bz2 from (4.15)–(4.17) to give the following equation for w2:

−ω
2

σ
w2 + rw2T

′
1 − ζqw′′2 =

k2
1

iω
(rw1T

′
1 + ω2w1 − ζ2qw′′1 )− rw1T

′
2. (4.20)

Since the linear operator on the left-hand side is the same as in (4.14), a solvability
condition is obtained by multiplying (4.20) by w∗1 and integrating. After removing T ′1
using (4.14), the following formula for the frequency ω is obtained:

ω2(1 + σ)

∫ 1

0

|w1|2 dz = σζq(1− ζ)
∫ 1

0

|w′1|2 dz. (4.21)

To summarize, fully nonlinear oscillatory magnetoconvection is governed by (4.19),
(4.21) and (4.14) which after substituting for T ′1 using (4.18) becomes

ω2

σ
w1 +

rw1N

1 + 2k2
1 |w1|2/ω2

+ ζqw′′1 = 0. (4.22)

As in the steady case, linear and weakly nonlinear theory can be checked. In the
linear case, N = 1, (4.22) gives w1 = A sin πz and ω2/σ + r − ζqπ2 = 0 while (4.21)
yields ω2(1 + σ) = σζqπ2(1 − ζ). Combining these two equations, the linear results
(2.10) and (2.11) are obtained. In the weakly nonlinear case, working to O(A2), (4.19)
gives N = 1 + k2

1A
2/ω2. Equating sin πz terms in (4.22) gives the formula for the

amplitude,

A2 =
2σ(1− ζ)(r − rc)

k2
1(σ + ζ)

. (4.23)

Formulae for the amplitude of weakly nonlinear travelling waves and standing waves
were given by Matthews & Rucklidge (1993); taking the limit of large Q in these
formulae gives (4.23) in both cases.

Two important results follow from (4.21). The linear result that oscillatory convec-
tion can only occur for ζ < 1 remains true in the nonlinear regime. Also, since∫ 1

0

|w′1|2 dz > π2

∫ 1

0

|w1|2 dz (4.24)
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for any smooth w1 obeying the boundary conditions, the nonlinear frequency of
oscillation cannot be less than that given by linear theory (2.11) at the onset of
convection, i.e.

ω2 >
σζqπ2(1− ζ)

1 + σ
. (4.25)

This result is of interest since it is the opposite of that predicted by linear theory:
computing the dependence of the frequency on R from the linearized equations, one
finds that the frequency of linear oscillations decreases as R increases, and that for
R > ζQπ2 the growth rate is real. However, (4.25) shows that these linear results are
misleading and that the fully nonlinear behaviour is quite different. Similarly, (4.25)
indicates that the scenario in which nonlinear oscillations decrease in frequency until
the oscillations terminate at a global bifurcation, as described by Knobloch & Weiss
(1983), is not the only possibility and does not occur in this large-Q scaling.

As in the steady case, the value of the wavenumber plays no role except in the
scaling of the vertical velocity. By defining W =

√
2k1w1/ω the equations (4.19), (4.21)

and (4.22) simplify to

N−1 =

∫ 1

0

dz

1 + |W |2 , (4.26)

ω2(1 + σ)

∫ 1

0

|W |2 dz = σζq(1− ζ)
∫ 1

0

|W ′|2 dz, (4.27)

ω2

σ
W +

rWN

1 + |W |2 + ζqW ′′ = 0, (4.28)

so the Nusselt number N and frequency ω do not depend on the wavenumber k.
Note that in the limit ζ → 1, (4.27) shows that ω → 0 and the steady problem (3.11),
(3.12) is recovered.

In the limit r → ∞, W also becomes large and it is of interest to determine the
scaling for ω. If ω becomes large, then the leading terms in (4.28) give ω2|W |2/σ +
rN ≈ 0, which is a contradiction since all terms are positive. Therefore the frequency
ω must remain of order 1 as r → ∞. The same asymptotic scaling holds as in the
steady case, so that N is of order r log r.

Numerical solutions to (4.26)–(4.28) can be obtained using a method similar to
that used for the steady case. The only additional complication is that ω must be
determined self-consistently by evaluating numerically the integrals in (4.27). The
Nusselt number and the maximum vertical velocity for the case ζ = 0.5, σ = 1 are
shown in figure 4, and the corresponding frequency in figure 5. The frequency increases
with r and approaches a constant at large r, as required by the argument above. Note
however that the variation in frequency is very slight (only about 6%). This indicates
that the function W (z) does not deviate greatly from its initially sinusoidal form.
Profiles of W and T are not plotted, as they are very similar to those for the steady
case shown in figures 2 and 3.

5. Discussion
This work has generalized the asymptotic analysis for rapidly rotating convection

(Bassom & Zhang 1994) to the case of convection in a strong vertical magnetic field.
Prompted by linear theory, fully nonlinear solutions are obtained with a wavenumber
of order Q1/6. In the steady case, nonlinear magnetoconvection is governed by (3.11),
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Figure 4. Nusselt number (solid line) and maximum vertical velocity (dashed line) as a function of
R/Q, for oscillatory magnetoconvection with ζ = 0.5, σ = 1.
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Figure 5. Frequency of oscillatory magnetoconvection as a function of R/Q, for ζ = 0.5, σ = 1.

(3.12). It is remarkable that the heat flux N and the mean temperature profile do
not depend on either of the Prandtl numbers, the planform function or even the
precise value of the wavenumber k. The only remaining parameter is R/Q, so all cases
are covered by figure 1. Other features of the flow are also governed by this single
parameter, after scaling by an appropriate power of k. The vertical velocity is of
order Q1/6 and the horizontal velocity components are of order one. The horizontally
averaged temperature is of order one, but horizontal fluctuations to the temperature
and magnetic field are small.

For oscillatory magnetoconvection, the Prandtl numbers do play a role, but the
heat flux and the frequency are independent of the wavenumber and the planform.
In this case, the vertical and horizontal velocity components are of order Q1/3 and
Q1/6 respectively, but despite this the flow is still dominated by a single wavenumber
and the nonlinear terms are small.

Concurrent work by Julien, Knobloch & Tobias (1999) has considered the same
problem but with a different scaling, where the wavenumber and the vertical velocity
are of order Q1/4. With this scaling, steady and oscillatory convection can be handled
simultaneously, so that a single nonlinear eigenvalue problem is obtained covering
both cases. Their results are qualitatively similar to those presented here; for example
they also find that the variation of the frequency with R is small.
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There are two related questions that have not been addressed by this work or
by the related work on fully nonlinear rotating convection (Bassom & Zhang 1994;
Julien & Knobloch 1997). The first is the question of planform selection. In principle
this problem can be approached by continuing the asymptotic expansion to higher
order. In fact this is a difficult task. At second order, correction terms to the flow, the
temperature perturbation and the magnetic field arise, and a number of differential
equations must be solved numerically to determine these. However, there is no mean
temperature at this order and hence no change in the Nusselt number. To distinguish
between the different possible planforms it is necessary to continue to third order
and carry out further numerical computations. However, the importance of planform
selection is often overestimated. Physically, the quantity of interest is the heat flux,
which is determined at leading order. The second issue concerns the stability of
these fully nonlinear solutions. Again, this requires higher-order effects, together with
identification of the appropriate timescale. This is difficult because of the large number
of different timescales in the problem, all of which must be considered if a solution is
to be shown to be stable. Such complications of timescale even occur in the original
linear stability analysis of the trivial state; for example when ζ > 1, the growth rate
is of order Q1/3 when Qπ2 < R < ζQπ2, but Q1/2 when R > ζQπ2.

An alternative approach to the questions of planform selection and stability is to
compare the asymptotic solutions with numerical simulations of the original equations
(2.1)–(2.4). This method is also not straightforward since numerical problems arise in
the limit of large Q, so numerical solutions can never really reach the asymptotic limit.
However, preliminary two-dimensional numerical simulations of magnetoconvection
show good agreement with the asymptotic theory. Details of this work will be
described in a future paper.
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